Nanofibrous Scaffolds of Bio-polyesters: In Vitro and In Vivo Characterizations and Tissue Response

نویسندگان

  • Hui Ying Tang
  • Daisuke Ishii
  • Kumar Sudesh
  • Tetsuji Yamaoka
  • Tadahisa Iwata
چکیده

Hui Ying Tang1,2, Daisuke Ishii3, Kumar Sudesh1, Tetsuji Yamaoka4 and Tadahisa Iwata2,5 1School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, 2Bioengineering Laboratory, RIKEN Institute / Hirosawa 2-1, Wako-shi, Saitama 351-0198, 3Department of Materials Chemistry, Faculty of Science and Engineering, Ryukoku University / 1-5 Yokotani, Seta Oe-cho, Otsu-shi, Shiga 520-2194, 4Department of Biomedical Engineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita-shi, Osaka 565-8565, 5Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo / 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, 1Malaysia 2,3,4,5Japan

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering

Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...

متن کامل

Preparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite

Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite  (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...

متن کامل

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

In vitro and In vivo Investigation of poly(lactic acid)/hydroxyapatite nanoparticle scaffold containing nandrolone decanoate for the regeneration of critical-sized bone defects

Objective(s): Bone tissue engineering is aimed at the fabrication of bone graft to ameliorate bone defects without using autografts or allografts. Materials and Methods: In the present study, the coprecipitation method was used to prepare hydroxyapatite (HA) nanoparticles containing nandrolone. To do so, 12.5, 25, and 50 mg of nandrolone were loaded into poly(lactic acid) (PLA)/nano-HA, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017